Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/113800
Título: Towards Mobile Federated Learning with Unreliable Participants and Selective Aggregation
Autor: Esteves, Leonardo 
Portugal, David 
Peixoto, Paulo 
Falcão, Gabriel 
Palavras-chave: federated learning (FL); federated averaging (FedAvg); federated SGD (FedSGD); unreliable participants; selective aggregation
Data: 2023
Editora: MDPI
Projeto: UIDB/50008/2020 
EXPL/EEI-HAC/1511/2021 
UIDB/00048/2020 
Título da revista, periódico, livro ou evento: Applied Sciences (Switzerland)
Volume: 13
Número: 5
Resumo: Recent advances in artificial intelligence algorithms are leveraging massive amounts of data to optimize, refine, and improve existing solutions in critical areas such as healthcare, autonomous vehicles, robotics, social media, or human resources. The significant increase in the quantity of data generated each year makes it urgent to ensure the protection of sensitive information. Federated learning allows machine learning algorithms to be partially trained locally without sharing data, while ensuring the convergence of the model so that privacy and confidentiality are maintained. Federated learning shares similarities with distributed learning in that training is distributed in both paradigms. However, federated learning also decentralizes the data to maintain the confidentiality of the information. In this work, we explore this concept by using a federated architecture for a multimobile computing case study and focus our attention on the impact of unreliable participants and selective aggregation in the federated solution. Results with Android client participants are presented and discussed, illustrating the potential of the proposed approach for real-world applications.
URI: https://hdl.handle.net/10316/113800
ISSN: 2076-3417
DOI: 10.3390/app13053135
Direitos: openAccess
Aparece nas coleções:I&D ISR - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
I&D IT - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Visualizações de página

129
Visto em 30/out/2024

Downloads

61
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons