Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/11460
DC FieldValueLanguage
dc.contributor.authorAdámek, Jirí-
dc.contributor.authorBashir, Robert El-
dc.contributor.authorSobral, Manuela-
dc.contributor.authorVelebil, Jirí-
dc.date.accessioned2009-09-16T13:45:35Z-
dc.date.available2009-09-16T13:45:35Z-
dc.date.issued2001-
dc.identifier.citationPré-Publicações DMUC. 01-16 (2001)en_US
dc.identifier.urihttps://hdl.handle.net/10316/11460-
dc.description.abstractWe show that lax epimorphisms in the category Cat are precisely the functors P : Ε → B for which the functor P* : [B, Set] → [E, Set] of composition with P is fully faithful. We present two other characterizations. Firstly, lax epimorphisms are precisely the ``absolutely dense'' functors, i.e., functors P such that every object B of B is an absolute colimit of all arrows P(E) → B for E in E. Secondly, lax epimorphisms are precisely the functors P such that for every morphism f of B the category of all factorizations through objects of P[E] is connected. A relationship between pseudoepimorphisms and lax epimorphisms is discussed.en_US
dc.language.isoengen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.rightsopenAccessen_US
dc.subjectLax epimorphismen_US
dc.titleOn functors which are lax epimorphismsen_US
dc.typepreprinten_US
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.fulltextCom Texto completo-
item.openairetypepreprint-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-9289-6147-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais
Files in This Item:
File Description SizeFormat
On functors which are lax epimorphisms.pdf244.2 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

449
checked on Oct 29, 2024

Download(s)

130
checked on Oct 29, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.