Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/116905
Título: Superior macro-scale tribological performance of steel contacts based on graphene quantum dots in aqueous glycerol
Autor: Nadeem, Irfan
Malok, Matjaž
Kovač, Janez
Yaqub, Talha Bin 
Carvalho, Albano Augusto Cavaleiro Rodrigues de 
Kalin, Mitjan 
Palavras-chave: Graphene; Graphene quantum dots; Graphite; Aqueous glycerol; Super-low friction; Green tribology
Data: 6-Fev-2023
Editora: Elsevier
Projeto: Marie Skłodowska-Curie 
Título da revista, periódico, livro ou evento: Tribology International
Volume: 181
Resumo: Reducing friction is one of the best ways to lower energy consumption and make processes more environmentally friendly. Because of the growing interest in green lubricants, we investigated the synergetic effects of graphene quantum dots (GQDs) combined with aqueous glycerol to improve the lubrication performance of self-mated steel contacts in reciprocating sliding motion. As a comparison, the lubrication performance of some other two-dimensional (2D) graphitic materials (graphite, graphene oxide, and graphene nanoplatelets) was also studied. The results demonstrate that the GQDs-based nano-lubricant reduces the running-in period and provides super-low friction at a high contact pressure in the boundary-lubrication regime, with 72% and 53% improvements in anti-friction and anti-wear performance compared with aqueous glycerol. On the other hand, the 2D graphitic materials provide super-low friction in the mixed-lubrication regime due to the dominant polishing effect of the hydroxyl groups. The surface Raman mapping indicates that the 2D graphitic materials were severely damaged by the continuous reciprocating motion owing to their inferior crack resistance. In contrast, the superior deformation resistance of the GQDs helps to develop a tough tribofilm. This lubrication mechanism suggests that internal shearing of graphene layers inside the GQDs significantly reduces the wear and friction during the running-in period, while the in-situ formation of strongly adhered tough tribofilm with more surface coverage contributed to the realization of super-low friction under a high contact pressure. This study demonstrated that GQDs-based green nano-lubricants could provide super-low friction at a high contact pressure in the boundary-lubrication regime, which was so far characteristic mainly for conventional environment-polluting lubricants.
URI: https://hdl.handle.net/10316/116905
ISSN: 0301679X
DOI: 10.1016/j.triboint.2023.108328
Direitos: openAccess
Aparece nas coleções:I&D CEMMPRE - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
S0301679X23001159.htm173.28 kBHTMLVer/Abrir
Mostrar registo em formato completo

Visualizações de página

5
Visto em 6/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons