Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/27727
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ludwig, Oswaldo | - |
dc.contributor.author | Nunes, Urbano | - |
dc.contributor.author | Araujo, Rui | - |
dc.date.accessioned | 2014-11-25T11:42:38Z | - |
dc.date.available | 2014-11-25T11:42:38Z | - |
dc.date.issued | 2014-01-26 | - |
dc.identifier.citation | LUDWIG, Oswaldo; NUNES, Urbano; ARAUJO, Rui - Eigenvalue decay: a new method for neural network regularization. "Neurocomputing". ISSN 0925-2312. Vol. 124 (2014) p. 33–42 | por |
dc.identifier.issn | 0925-2312 | - |
dc.identifier.uri | https://hdl.handle.net/10316/27727 | - |
dc.description.abstract | This paper proposes two new training algorithms for multilayer perceptrons based on evolutionary computation, regularization, and transduction. Regularization is a commonly used technique for preventing the learning algorithm from overfitting the training data. In this context, this work introduces and analyzes a novel regularization scheme for neural networks (NNs) named eigenvalue decay, which aims at improving the classification margin. The introduction of eigenvalue decay led to the development of a new training method based on the same principles of SVM, and so named Support Vector NN (SVNN). Finally, by analogy with the transductive SVM (TSVM), it is proposed a transductive NN (TNN), by exploiting SVNN in order to address transductive learning. The effectiveness of the proposed algorithms is evaluated on seven benchmark datasets. | por |
dc.language.iso | eng | por |
dc.publisher | Elsevier | por |
dc.rights | openAccess | por |
dc.subject | Transduction | por |
dc.subject | Regularization | por |
dc.subject | Genetic algorithm | por |
dc.subject | Classification margin | por |
dc.subject | Neural network | por |
dc.title | Eigenvalue decay: a new method for neural network regularization | por |
dc.type | article | por |
degois.publication.firstPage | 33 | por |
degois.publication.lastPage | 42 | por |
degois.publication.title | Neurocomputing | por |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0925231213008333 | por |
dc.peerreviewed | Yes | por |
dc.identifier.doi | 10.1016/j.neucom.2013.08.005 | - |
degois.publication.volume | 124 | por |
uc.controloAutoridade | Sim | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | Com Texto completo | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
crisitem.author.researchunit | ISR - Institute of Systems and Robotics | - |
crisitem.author.researchunit | ISR - Institute of Systems and Robotics | - |
crisitem.author.parentresearchunit | University of Coimbra | - |
crisitem.author.parentresearchunit | University of Coimbra | - |
crisitem.author.orcid | 0000-0002-7750-5221 | - |
crisitem.author.orcid | 0000-0002-1007-8675 | - |
Appears in Collections: | I&D ISR - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Eigenvalue decay.pdf | 718.75 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
67
checked on Oct 14, 2024
WEB OF SCIENCETM
Citations
5
58
checked on Oct 2, 2024
Page view(s) 50
432
checked on Oct 29, 2024
Download(s) 20
1,281
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.