Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/27727
Título: | Eigenvalue decay: a new method for neural network regularization | Autor: | Ludwig, Oswaldo Nunes, Urbano Araujo, Rui |
Palavras-chave: | Transduction; Regularization; Genetic algorithm; Classification margin; Neural network | Data: | 26-Jan-2014 | Editora: | Elsevier | Citação: | LUDWIG, Oswaldo; NUNES, Urbano; ARAUJO, Rui - Eigenvalue decay: a new method for neural network regularization. "Neurocomputing". ISSN 0925-2312. Vol. 124 (2014) p. 33–42 | Título da revista, periódico, livro ou evento: | Neurocomputing | Volume: | 124 | Resumo: | This paper proposes two new training algorithms for multilayer perceptrons based on evolutionary computation, regularization, and transduction. Regularization is a commonly used technique for preventing the learning algorithm from overfitting the training data. In this context, this work introduces and analyzes a novel regularization scheme for neural networks (NNs) named eigenvalue decay, which aims at improving the classification margin. The introduction of eigenvalue decay led to the development of a new training method based on the same principles of SVM, and so named Support Vector NN (SVNN). Finally, by analogy with the transductive SVM (TSVM), it is proposed a transductive NN (TNN), by exploiting SVNN in order to address transductive learning. The effectiveness of the proposed algorithms is evaluated on seven benchmark datasets. | URI: | https://hdl.handle.net/10316/27727 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2013.08.005 | Direitos: | openAccess |
Aparece nas coleções: | I&D ISR - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Eigenvalue decay.pdf | 718.75 kB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
67
Visto em 14/out/2024
Citações WEB OF SCIENCETM
5
58
Visto em 2/out/2024
Visualizações de página 50
432
Visto em 29/out/2024
Downloads 20
1.281
Visto em 29/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.