Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/43818
DC FieldValueLanguage
dc.contributor.authorCalderón, Antonio J.-
dc.contributor.authorNavarro, Francisco J.-
dc.contributor.authorSánchez, José María-
dc.date.accessioned2017-10-10T09:57:08Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/10316/43818-
dc.description.abstractLet (T,<.,.,.>) be a triple system of arbitrary dimension, over an arbitrary base field F and in which any identity on the triple product is not supposed. A basis B={e_i}_i€I of T is called multiplicative if for any i,j,k € I, we have that <e_i,e_j,e_k>€Fe_r for some r € I. We show that if T admits a multiplicative basis, then it decomposes as the orthogonal direct sum T=o_k I_k of well-described ideals admitting each one a multiplicative basis. Also, the minimality of T is characterized in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is by the family of its minimal ideals.por
dc.language.isoengpor
dc.publisherTaylor & Francispor
dc.rightsembargoedAccess-
dc.titleArbitrary triple systems admitting a multiplicative basispor
dc.typearticle-
degois.publication.firstPage1203por
degois.publication.lastPage1210por
degois.publication.issue3por
degois.publication.titleCommunications in Algebrapor
dc.relation.publisherversionhttp://dx.doi.org/10.1080/00927872.2016.1175589por
dc.peerreviewedyespor
dc.identifier.doi10.1080/00927872.2016.1175589por
dc.identifier.doi10.1080/00927872.2016.1175589-
degois.publication.volume45por
dc.date.embargo2018-10-10T09:57:08Z-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Artigo6.pdf100.44 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 10

1
checked on Nov 2, 2024

Page view(s) 50

484
checked on Nov 6, 2024

Download(s)

364
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.