Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/44397
Title: An intrinsic Liouville theorem for degenerate parabolic equations
Authors: Teixeira, Eduardo V. 
Urbano, José Miguel 
Issue Date: 2014
Publisher: Springer
Project: PEst-C/MAT/ UI0324/2011 
metadata.degois.publication.title: Archiv der Mathematik
metadata.degois.publication.volume: 102
metadata.degois.publication.issue: 5
Abstract: We show that weak solutions of the degenerate p−Laplace equation u_t - {\rm div}\left( |\nabla u|^{p-2}\nabla u \right) = 0,\quad p > 2 in the whole space are constant if their growth at infinity is properly controlled in an intrinsic manner.
URI: https://hdl.handle.net/10316/44397
DOI: 10.1007/s00013-014-0648-y
10.1007/s00013-014-0648-y
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
Urbano_paper1.pdf124.57 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

9
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 10

8
checked on Oct 2, 2024

Page view(s) 20

799
checked on Oct 29, 2024

Download(s)

292
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.