Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/44481
Título: | Lifts of convex sets and cone factorizations | Autor: | Gouveia, João Parrilo, Pablo A. Thomas, Rekha |
Data: | 2013 | Editora: | INFORMS | Projeto: | PEst-C/MAT/UI0324/2011 | Título da revista, periódico, livro ou evento: | Mathematics of Operations Research | Volume: | 38 | Número: | 2 | Resumo: | In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or 'lift' of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equivalent to the existence of a factorization of an operator associated to the set and its polar via elements in the cone and its dual. This generalizes a theorem of Yannakakis that established a connection between polyhedral lifts of a polytope and nonnegative factorizations of its slack matrix. Symmetric lifts of convex sets can also be characterized similarly. When the cones live in a family, our results lead to the definition of the rank of a convex set with respect to this family. We present results about this rank in the context of cones of positive semidefinite matrices. Our methods provide new tools for understanding cone lifts of convex sets. | URI: | https://hdl.handle.net/10316/44481 | DOI: | 10.1287/moor.1120.0575 10.1287/moor.1120.0575 |
Direitos: | openAccess |
Aparece nas coleções: | I&D CMUC - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
GPTMORR.pdf | 404.24 kB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
119
Visto em 28/out/2024
Citações WEB OF SCIENCETM
1
111
Visto em 2/out/2024
Visualizações de página 5
1.294
Visto em 29/out/2024
Downloads
234
Visto em 29/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.