Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/44498
DC FieldValueLanguage
dc.contributor.authorTeixeira, Eduardo V.-
dc.contributor.authorTeymurazyan, Rafayel-
dc.date.accessioned2017-11-21T16:57:32Z-
dc.date.available2017-11-21T16:57:32Z-
dc.date.issued2015-
dc.identifier.issn0024-6107-
dc.identifier.issn1469-7750-
dc.identifier.urihttps://hdl.handle.net/10316/44498-
dc.description.abstractIn this article, we study optimization problems ruled by fractional diffusion operators with volume constraints. By means of penalization techniques, we prove existence of solutions. We also show that every solution is locally of class C^{0,α} (optimal regularity), and that the free boundary is a C^{1,γ} surface, up to an H^{n−1}-negligible set.-
dc.language.isoeng-
dc.publisherWiley-
dc.rightsopenAccess-
dc.titleOptimal design problems with fractional diffusions-
dc.typearticle-
degois.publication.firstPage338-
degois.publication.lastPage352-
degois.publication.issue2-
degois.publication.titleJournal of the London Mathematical Society-
dc.relation.publisherversionhttp://dx.doi.org/10.1112/jlms/jdv034-
dc.peerreviewedyes-
dc.identifier.doi10.1112/jlms/jdv034-
dc.identifier.doi10.1112/jlms/jdv034-
degois.publication.volume92-
dc.date.embargo2015-01-01*
uc.date.periodoEmbargo0-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5263-8992-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
TT (2015).pdf386.98 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

5
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 10

5
checked on Oct 2, 2024

Page view(s)

275
checked on Oct 29, 2024

Download(s)

177
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.