Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/4591
DC FieldValueLanguage
dc.contributor.authorFonseca, C. M. da-
dc.contributor.authorSá, E. Marques de-
dc.date.accessioned2008-09-01T11:34:53Z-
dc.date.available2008-09-01T11:34:53Z-
dc.date.issued2008en_US
dc.identifier.citationDiscrete Mathematics. 308:7 (2008) 1308-1318en_US
dc.identifier.urihttps://hdl.handle.net/10316/4591-
dc.description.abstractWe determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V00-4NF4F6K-H/1/e5d0725d5317b08a025d7df94b2ca643en_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectDoubly stochastic matrixen_US
dc.subjectBirkhoff polytopeen_US
dc.subjectTridiagonal matrixen_US
dc.subjectNumber of verticesen_US
dc.titleFibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytopeen_US
dc.typearticleen_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.orcid0000-0002-7145-5550-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file42180c0a84bf45de89fa04a7e2aa0606.pdf203.88 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

411
checked on Oct 29, 2024

Download(s)

112
checked on Oct 29, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.