Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/4601
DC FieldValueLanguage
dc.contributor.authorCaldeira, Cristina-
dc.date.accessioned2008-09-01T11:35:04Z-
dc.date.available2008-09-01T11:35:04Z-
dc.date.issued2007en_US
dc.identifier.citationLinear Algebra and its Applications. 424:2-3 (2007) 492-509en_US
dc.identifier.urihttps://hdl.handle.net/10316/4601-
dc.description.abstractLet V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V0R-4N4J352-3/1/1ed47bbdae767944ea37612f8490fe7een_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectGrassmann spaceen_US
dc.subjectDerivationen_US
dc.subjectMinimal polynomialen_US
dc.titleCritical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spacesen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.laa.2007.02.021-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
filef9a69295a87b479d89b971af510f696a.pdf202.71 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

452
checked on Nov 6, 2024

Download(s)

215
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.