Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/81025
Título: Using clustering techniques to provide simulation scenarios for the smart grid
Autor: Miguel, Pedro 
Gonçalves, José 
Neves, Luís 
Martins, A. Gomes 
Palavras-chave: Data clustering Demand response Energy box Energy storage Smart grid Distribution system operator
Data: 2016
Editora: Elsevier
Projeto: CENTRO-07-0224-FEDER-002004 
PEst-OE/EEI/UI0308/2014 
UID/MULTI/00308/2013 
Título da revista, periódico, livro ou evento: Sustainable Cities and Society
Volume: 26
Resumo: The objective of this work is to obtain characteristic daily profiles of consumption, wind generation and electricity spot prices, needed to develop assessments of two different options commonly regarded under the smart grid paradigm: residential demand response, and small scale distributed electric energy storage. The approach consists of applying clustering algorithms to historical data, namely using a hierarchical method and a self-organizing neural network, in order to obtain clusters of diagrams representing characteristic daily diagrams of load, wind generation or electricity price. These diagrams are useful not only to analyze different scenarios of combined existence, but also to understand their individual relative importance. This study enabled also the identification of a probable range of variation around an average profile, by defining boundary profiles with the maximum and minimum values of any cluster prototypes.
URI: https://hdl.handle.net/10316/81025
ISSN: 2210-6707
DOI: 10.1016/j.scs.2016.04.012
Direitos: embargoedAccess
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
SCS_clusteringtechniques_1-s2.0-S2210670716300658-main.pdf2.2 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

7
Visto em 11/nov/2022

Citações WEB OF SCIENCETM
10

9
Visto em 2/nov/2024

Visualizações de página

240
Visto em 6/nov/2024

Downloads

345
Visto em 6/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons