Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89455
DC FieldValueLanguage
dc.contributor.authorMontoli, Andrea-
dc.contributor.authorRodelo, Diana-
dc.contributor.authorVan der Linden, Tim-
dc.date.accessioned2020-06-03T15:45:47Z-
dc.date.available2020-06-03T15:45:47Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/89455-
dc.description.abstractIn the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of S-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.pt
dc.language.isoengpt
dc.publisherSpringer Verlagpt
dc.relationCMUC-UID/MAT/00324/2019pt
dc.rightsembargoedAccesspt
dc.subjectFibration of points; Jointly extremal-epimorphic pair; Regular category; Unital category; Protomodular category; Monoid; Jónsson–Tarski varietypt
dc.titleIntrinsic Schreier Split Extensionspt
dc.typearticle-
degois.publication.firstPage517pt
degois.publication.lastPage538pt
degois.publication.titleApplied Categorical Structurespt
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs10485-019-09588-4pt
dc.peerreviewedyespt
dc.identifier.doi10.1007/s10485-019-09588-4pt
degois.publication.volume28pt
dc.date.embargo2020-12-31*
uc.date.periodoEmbargo365pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-4816-3234-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
arXiv version1.pdf302.08 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations 20

2
checked on Oct 2, 2024

Page view(s)

137
checked on Oct 29, 2024

Download(s)

92
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.