Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89489
Title: A criterion for reflectiveness of normal extensions
Authors: Montoli, Andrea 
Rodelo, Diana 
Van der Linden, Tim 
Keywords: Categorical Galois theory; admissible Galois structure; central, normal, trivial extension; S-protomodular category; unital category; abelian object.
Issue Date: 2016
Publisher: Belgium Mathematical Society - Project Euclides
Project: UID/MAT/00324/2013 
metadata.degois.publication.title: Bulletin of the Belgian Mathematical Society - Simon Stevin
metadata.degois.publication.volume: 23
metadata.degois.publication.issue: 5
Abstract: We give a new sufficient condition for the normal extensions in an admissible Galois structure to be reflective. We then show that this condition is indeed fulfilled when X is the (protomodular) reflective subcategory of S-special objects of a Barr-exact S-protomodular category C, where S is the class of split epimorphic trivial extensions in C. Next to some concrete examples where the criterion may be applied, we also study the adjunction between a Barr-exact unital category and its abelian core, which we prove to be admissible.
URI: https://hdl.handle.net/10316/89489
DOI: 10.36045/bbms/1483671620
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
criterion-formato-article.pdf441.98 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

2
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations 10

1
checked on Oct 2, 2024

Page view(s)

180
checked on Nov 6, 2024

Download(s)

152
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.