Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/8981
Title: | On a conjecture about the µ-permanent | Authors: | Fonseca, C. M. da | Issue Date: | 2005 | Citation: | Linear and Multilinear Algebra - Taylor & Francis. 53:3 (2005) 225-230 | Abstract: | Let A=(aij) be an n-by-nmatrix. For any real µ, define the polynomial Pµ(A)=Σ (σ E Sn) α1 σ(1) . . . αnσ(n)µ l(σ) where l (s) is the number of inversions of the permutation s in the symmetric group Sn. We prove that Pµ (A)is a strictly increasing function of µ ? [-1,1], for a Hermitian positive definite nondiagonal matrix A, whose graph is a tree. | URI: | https://hdl.handle.net/10316/8981 | DOI: | 10.1080/03081080500092372 | Rights: | openAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Show full item record
SCOPUSTM
Citations
4
checked on Oct 14, 2024
WEB OF SCIENCETM
Citations
4
checked on Oct 2, 2024
Page view(s) 50
498
checked on Oct 29, 2024
Download(s)
238
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.