Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/90467
DC FieldValueLanguage
dc.contributor.authorGutiérrez García, Javier-
dc.contributor.authorKubiak, Tomasz-
dc.contributor.authorPicado, Jorge-
dc.date.accessioned2020-07-20T14:54:35Z-
dc.date.available2020-07-20T14:54:35Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/90467-
dc.description.abstractThe purpose of this paper is to identify the role of perfectness in the Michael insertion theorem for perfectly normal locales. We attain it by characterizing perfect locales in terms of strict insertion of two comparable lower semicontinuous and upper semicontinuous localic real functions. That characterization, when combined with the insertion theorem for normal locales, provides an improved formulation of the aforementioned pointfree form of Michael’s insertion theorem.pt
dc.language.isoengpt
dc.publisherSpringerpt
dc.relationUID/MAT/00324/2019pt
dc.rightsembargoedAccesspt
dc.subjectLocale, Sublocale, Perfectness, G_\delta-perfectness, Perfect normality, Semicontinuous real function, Insertion theorem.pt
dc.titlePerfect locales and localic real functionspt
dc.typearticle-
degois.publication.issue32pt
degois.publication.titleAlgebra Universalispt
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00012-020-00661-xpt
dc.peerreviewedyespt
dc.identifier.doi10.1007/s00012-020-00661-xpt
degois.publication.volume81pt
dc.date.embargo2020-12-31*
uc.date.periodoEmbargo365pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-7837-1221-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Perfectness in locales (revised).pdf326.29 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2022

WEB OF SCIENCETM
Citations 20

2
checked on May 2, 2023

Page view(s)

199
checked on Nov 6, 2024

Download(s)

187
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.