Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/90806
Título: Raman Spectroscopic and Chemometric Investigation of Lipid-Protein Ratio Contents of Soybean Mutants
Autor: Ildiz, Gülce Ögrüç 
Celik, Ozge
Atak, Cimen
Yilmaz, Ayberk
Kabuk, Hayrunnisa Nur
Kaygisiz, Ersin
Ayan, Alp
Meric, Sinan
Lourenço, Rui Fausto 
Palavras-chave: Food analysis; PCA; Raman spectroscopy; Chemometrics; Cluster analysis; Food composition; Principal component analysis; Soybean; Soybean mutant
Data: Jan-2020
Editora: Sage
Projeto: UI0313/QUI/2013 
Título da revista, periódico, livro ou evento: Applied Spectroscopy
Volume: 74
Número: 1
Resumo: Seeds belonging to fourth generation mutants (M4) of Ataem-7 cultivar (A7) variety and S04-05 (S) breeding line salt-tolerant soybeans were investigated by Raman spectroscopy, complemented by chemometrics methods, in order to evaluate changes induced by mutations in the relative lipid-protein contents, and to find fast, efficient strategies for discrimination of the mutants and the control groups based on their Raman spectra. It was concluded that gamma irradiation caused an increase in the lipid to protein ratio of the studied Ataem-7 variety mutants, while it led to a decrease of this ratio in the investigated S04-05 breeding line mutants. These results were found to be in agreement with data obtained by reflectance spectrum analysis of the seeds in the full ultraviolet to near-infrared spectral region and suggest the possibility of developing strategies where gamma irradiation can be used as a tool to improve mutant soybean plants targeted to different applications, either enriched in proteins or in lipids. Ward's clustering and principal component analysis showed a clear discrimination between mutants and controls and, in the case of the studied S-type species, discrimination between the different mutants. The grouping scheme is also found to be in agreement with the compositional information extracted from the analysis of the lipid-protein contents of the different samples.
URI: https://hdl.handle.net/10316/90806
ISSN: 0003-7028
1943-3530
DOI: 10.1177/0003702819859940
Direitos: openAccess
Aparece nas coleções:I&D CQC - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
Appl_Spectrosc_74_2020_34.pdf786.46 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

8
Visto em 4/nov/2024

Citações WEB OF SCIENCETM
10

6
Visto em 2/nov/2024

Visualizações de página

182
Visto em 5/nov/2024

Downloads

266
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons