Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/95925
DC FieldValueLanguage
dc.contributor.authorViana, Cláudia M.-
dc.contributor.authorSantos, Maurício-
dc.contributor.authorFreire, Dulce-
dc.contributor.authorAbrantes, Patrícia-
dc.contributor.authorRocha, Jorge-
dc.date.accessioned2021-10-21T10:22:33Z-
dc.date.available2021-10-21T10:22:33Z-
dc.date.issued2021-
dc.identifier.issn1470160Xpt
dc.identifier.urihttps://hdl.handle.net/10316/95925-
dc.description.abstracto effectively plan and manage the use of agricultural land, it is crucial to identify and evaluate the multiple human and environmental factors that influence it. In this study, we propose a model framework to identify the factors potentially explaining the use of agricultural land for wheat, maize, and olive grove plantations at the regional level. By developing a machine-learning model coupled with a model-agnostic approach, we provide global and local interpretations of the most influential factors. We collected nearly 140 variables related to biophysical, bioclimatic, and agricultural socioeconomic conditions. Overall, the results indicated that biophysical and bioclimatic conditions were more influential than socioeconomic conditions. At the global interpretation level, the proposed model identified a strong contribution of conditions related to drainage density, slope, and soil type. In contrast, the local interpretation level indicated that socioeconomic conditions such as the degree of mechanisation could be influential in specific parcels of wheat. As demonstrated, the proposed analytical approach has the potential to serve as a decision-making tool instrument to better plan and control the use of agricultural land. © 2021 The Author(s)pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.relationSFRH/BD/115497/2016pt
dc.relationUIDB/00295/2020pt
dc.relationUIDP/00295/2020pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt
dc.subjectArtificial intelligencept
dc.subjectCroplandpt
dc.subjectInterpretabilitypt
dc.subjectLIMEpt
dc.subjectxAIpt
dc.titleEvaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approachpt
dc.typearticle-
degois.publication.firstPage108200pt
degois.publication.titleEcological Indicatorspt
dc.peerreviewedyespt
dc.identifier.doi10.1016/j.ecolind.2021.108200pt
degois.publication.volume131pt
dc.date.embargo2021-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCEIS20 - Centre of 20th Century Interdisciplinary Studies-
crisitem.author.orcid0000-0003-2969-4440-
crisitem.project.grantnoCentre of Geographical Studies -CEG-
crisitem.project.grantnoCentre of Geographical Studies-
Appears in Collections:FEUC- Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
1-s2.0-S1470160X21008657-main.pdf2.59 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

31
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations

24
checked on Oct 2, 2024

Page view(s)

164
checked on Oct 29, 2024

Download(s)

144
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons