Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/95925
Título: Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach
Autor: Viana, Cláudia M.
Santos, Maurício
Freire, Dulce 
Abrantes, Patrícia
Rocha, Jorge
Palavras-chave: Artificial intelligence; Cropland; Interpretability; LIME; xAI
Data: 2021
Editora: Elsevier
Projeto: SFRH/BD/115497/2016 
UIDB/00295/2020 
UIDP/00295/2020 
Título da revista, periódico, livro ou evento: Ecological Indicators
Volume: 131
Resumo: o effectively plan and manage the use of agricultural land, it is crucial to identify and evaluate the multiple human and environmental factors that influence it. In this study, we propose a model framework to identify the factors potentially explaining the use of agricultural land for wheat, maize, and olive grove plantations at the regional level. By developing a machine-learning model coupled with a model-agnostic approach, we provide global and local interpretations of the most influential factors. We collected nearly 140 variables related to biophysical, bioclimatic, and agricultural socioeconomic conditions. Overall, the results indicated that biophysical and bioclimatic conditions were more influential than socioeconomic conditions. At the global interpretation level, the proposed model identified a strong contribution of conditions related to drainage density, slope, and soil type. In contrast, the local interpretation level indicated that socioeconomic conditions such as the degree of mechanisation could be influential in specific parcels of wheat. As demonstrated, the proposed analytical approach has the potential to serve as a decision-making tool instrument to better plan and control the use of agricultural land. © 2021 The Author(s)
URI: https://hdl.handle.net/10316/95925
ISSN: 1470160X
DOI: 10.1016/j.ecolind.2021.108200
Direitos: openAccess
Aparece nas coleções:FEUC- Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
1-s2.0-S1470160X21008657-main.pdf2.59 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

31
Visto em 14/out/2024

Citações WEB OF SCIENCETM

24
Visto em 2/out/2024

Visualizações de página

164
Visto em 29/out/2024

Downloads

144
Visto em 29/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons