Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/95925
Título: | Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach | Autor: | Viana, Cláudia M. Santos, Maurício Freire, Dulce Abrantes, Patrícia Rocha, Jorge |
Palavras-chave: | Artificial intelligence; Cropland; Interpretability; LIME; xAI | Data: | 2021 | Editora: | Elsevier | Projeto: | SFRH/BD/115497/2016 UIDB/00295/2020 UIDP/00295/2020 |
Título da revista, periódico, livro ou evento: | Ecological Indicators | Volume: | 131 | Resumo: | o effectively plan and manage the use of agricultural land, it is crucial to identify and evaluate the multiple human and environmental factors that influence it. In this study, we propose a model framework to identify the factors potentially explaining the use of agricultural land for wheat, maize, and olive grove plantations at the regional level. By developing a machine-learning model coupled with a model-agnostic approach, we provide global and local interpretations of the most influential factors. We collected nearly 140 variables related to biophysical, bioclimatic, and agricultural socioeconomic conditions. Overall, the results indicated that biophysical and bioclimatic conditions were more influential than socioeconomic conditions. At the global interpretation level, the proposed model identified a strong contribution of conditions related to drainage density, slope, and soil type. In contrast, the local interpretation level indicated that socioeconomic conditions such as the degree of mechanisation could be influential in specific parcels of wheat. As demonstrated, the proposed analytical approach has the potential to serve as a decision-making tool instrument to better plan and control the use of agricultural land. © 2021 The Author(s) | URI: | https://hdl.handle.net/10316/95925 | ISSN: | 1470160X | DOI: | 10.1016/j.ecolind.2021.108200 | Direitos: | openAccess |
Aparece nas coleções: | FEUC- Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
1-s2.0-S1470160X21008657-main.pdf | 2.59 MB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
31
Visto em 14/out/2024
Citações WEB OF SCIENCETM
24
Visto em 2/out/2024
Visualizações de página
164
Visto em 29/out/2024
Downloads
144
Visto em 29/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Este registo está protegido por Licença Creative Commons