Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/97048
Campo DCValorIdioma
dc.contributor.authorMerlino, Silvia-
dc.contributor.authorPaterni, Marco-
dc.contributor.authorLocritani, Marina-
dc.contributor.authorAndriolo, Umberto-
dc.contributor.authorGonçalves, Gil-
dc.contributor.authorMassetti, Luciano-
dc.date.accessioned2022-01-08T15:59:57Z-
dc.date.available2022-01-08T15:59:57Z-
dc.date.issued2021-
dc.identifier.issn2073-4441pt
dc.identifier.urihttps://hdl.handle.net/10316/97048-
dc.description.abstractUnmanned aerial vehicles (UAV, aka drones) are being used for mapping macro-litter in the environment. As drone images require a manual processing task for detecting marine litter, it is of interest to evaluate the accuracy of non-expert citizen science operators (CSO) in performing this task. Students from Italian secondary schools (in this work, the CSO) were invited to identify, mark, and classify stranded litter items on a UAV orthophoto collected on an Italian beach. A specific training program and working tools were developed for the aim. The comparison with the standard in situ visual census survey returned a general underestimation (50%) of items. However, marine litter bulk categorisation was fairly in agreement with the in situ survey, especially for sources classification. The concordance level among CSO ranged between 60% and 91%, depending on the item properties considered (type, material, and colour). As the assessment accuracy was in line with previous works developed by experts, remote detection of marine litter on UAV images can be improved through citizen science programs, upon an appropriate training plan and provision of specific tools. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.pt
dc.language.isoengpt
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101000825/EU/New Approach to Underwater Technologies for Innovative, Low-cost Ocean obServationpt
dc.relationPTDC/EAM-REM/30324/2017/UAS4Litter - Low-cost Unmanned Aerial Systems (UASs) for marine litter coastal mappingpt
dc.relationUIDB/ 00308/2020pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectBeachpt
dc.subjectCoastal pollutionpt
dc.subjectDronept
dc.subjectPlasticpt
dc.subjectRemote sensingpt
dc.subjectWaste managementpt
dc.titleCitizen Science for Marine Litter Detection and Classification on Unmanned Aerial Vehicle Imagespt
dc.typearticle-
degois.publication.firstPage3349pt
degois.publication.issue23pt
degois.publication.titleWater (Switzerland)pt
dc.peerreviewedyespt
dc.identifier.doi10.3390/w13233349pt
degois.publication.volume13pt
dc.date.embargo2021-01-01*
uc.date.periodoEmbargo0pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.project.grantnoInstitute for Systems Engineering and Computers at Coimbra - INESC Coimbra-
crisitem.author.researchunitINESC Coimbra – Institute for Systems Engineering and Computers at Coimbra-
crisitem.author.orcid0000-0002-0185-7802-
crisitem.author.orcid0000-0002-1746-0367-
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais
Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
water-13-03349-v3.pdf3.45 MBAdobe PDFVer/Abrir
Mostrar registo em formato simples

Citações SCOPUSTM   

16
Visto em 1/mai/2023

Citações WEB OF SCIENCETM

25
Visto em 2/jun/2024

Visualizações de página

166
Visto em 6/nov/2024

Downloads

184
Visto em 6/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons