Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/97048
Título: Citizen Science for Marine Litter Detection and Classification on Unmanned Aerial Vehicle Images
Autor: Merlino, Silvia
Paterni, Marco
Locritani, Marina
Andriolo, Umberto 
Gonçalves, Gil 
Massetti, Luciano
Palavras-chave: Beach; Coastal pollution; Drone; Plastic; Remote sensing; Waste management
Data: 2021
Projeto: info:eu-repo/grantAgreement/EC/H2020/101000825/EU/New Approach to Underwater Technologies for Innovative, Low-cost Ocean obServation 
PTDC/EAM-REM/30324/2017/UAS4Litter - Low-cost Unmanned Aerial Systems (UASs) for marine litter coastal mapping 
UIDB/ 00308/2020 
Título da revista, periódico, livro ou evento: Water (Switzerland)
Volume: 13
Número: 23
Resumo: Unmanned aerial vehicles (UAV, aka drones) are being used for mapping macro-litter in the environment. As drone images require a manual processing task for detecting marine litter, it is of interest to evaluate the accuracy of non-expert citizen science operators (CSO) in performing this task. Students from Italian secondary schools (in this work, the CSO) were invited to identify, mark, and classify stranded litter items on a UAV orthophoto collected on an Italian beach. A specific training program and working tools were developed for the aim. The comparison with the standard in situ visual census survey returned a general underestimation (50%) of items. However, marine litter bulk categorisation was fairly in agreement with the in situ survey, especially for sources classification. The concordance level among CSO ranged between 60% and 91%, depending on the item properties considered (type, material, and colour). As the assessment accuracy was in line with previous works developed by experts, remote detection of marine litter on UAV images can be improved through citizen science programs, upon an appropriate training plan and provision of specific tools. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
URI: https://hdl.handle.net/10316/97048
ISSN: 2073-4441
DOI: 10.3390/w13233349
Direitos: openAccess
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
water-13-03349-v3.pdf3.45 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

16
Visto em 1/mai/2023

Citações WEB OF SCIENCETM

25
Visto em 2/jun/2024

Visualizações de página

166
Visto em 6/nov/2024

Downloads

184
Visto em 6/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons