Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/102102
Título: Hand/arm Gesture Segmentation by Motion Using IMU and EMG Sensing
Autor: Lopes, João 
Simão, Miguel 
Mendes, Nuno 
Safeea, Mohammad 
Afonso, José 
Neto, Pedro 
Palavras-chave: Gestures; Segmentation; Motion; IMU; EMG
Data: 2017
Projeto: Portugal 2020 project DM4Manufacturing POCI-01-0145-FEDER-016418 by UE/FEDER through the program COMPETE2020 
Título da revista, periódico, livro ou evento: Procedia Manufacturing
Volume: 11
Resumo: Gesture recognition is more reliable with a proper motion segmentation process. In this context we can distinguish if gesture patterns are static or dynamic. This study proposes a gesture segmentation method to distinguish dynamic from static gestures, using (Inertial Measurement Units) IMU and Electromyography (EMG) sensors. The performance of the sensors, individually as well as their combination, was evaluated by different users. It was concluded that when considering gestures which only contain arm movement, the lowest error obtained was by the IMU. However, as expected, when considering gestures which have only hand motion, the combination of the 2 sensors achieved the best performance. Results of the sensor fusion modality varied greatly depending on user. The application of different filtering method to the EMG data as a solution to the limb position resulted in a significative reduction of the error.
URI: https://hdl.handle.net/10316/102102
ISSN: 23519789
DOI: 10.1016/j.promfg.2017.07.158
Direitos: openAccess
Aparece nas coleções:FCTUC Eng.Mecânica - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
1-s2.0-S2351978917303645-main.pdf646.81 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

23
Visto em 4/nov/2024

Citações WEB OF SCIENCETM

17
Visto em 2/nov/2024

Visualizações de página

117
Visto em 29/out/2024

Downloads

70
Visto em 29/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons