Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/111956
DC FieldValueLanguage
dc.contributor.authorMelotti, Gledson-
dc.contributor.authorLu, Weihao-
dc.contributor.authorConde, Pedro-
dc.contributor.authorZhao, Dezong-
dc.contributor.authorAsvadi, Alireza-
dc.contributor.authorGonçalves, Nuno-
dc.contributor.authorPremebida, Cristiano-
dc.date.accessioned2024-01-17T11:40:52Z-
dc.date.available2024-01-17T11:40:52Z-
dc.date.issued2023-
dc.identifier.issn1524-9050pt
dc.identifier.issn1558-0016pt
dc.identifier.urihttps://hdl.handle.net/10316/111956-
dc.description.abstractObject detection in autonomous driving applications implies the detection and tracking of semantic objects that are commonly native to urban driving environments, as pedestrians and vehicles. One of the major challenges in state-of-the-art deep-learning based object detection are false positives which occur with overconfident scores. This is highly undesirable in autonomous driving and other critical robotic-perception domains because of safety concerns. This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing. The suggested approach avoids the traditional Sigmoid or Softmax prediction layer which often produces overconfident predictions. It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives. The approach is validated on the 2D-KITTI objection detection through the YOLOV4 and SECOND (Lidar-based detector). The proposed approach enables interpretable probabilistic predictions without the requirement of re-training the network and therefore is very practical.pt
dc.language.isoengpt
dc.publisherIEEEpt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt
dc.subjectObject Detectionpt
dc.subjectOverconfident predictionpt
dc.subjectProbabilistic calibrationpt
dc.subjectMultimodalitypt
dc.subjectDeep learningpt
dc.titleProbabilistic Approach for Road-Users Detectionpt
dc.typearticle-
degois.publication.firstPage9253pt
degois.publication.lastPage9267pt
degois.publication.issue9pt
degois.publication.titleIEEE Transactions on Intelligent Transportation Systemspt
dc.peerreviewedyespt
dc.identifier.doi10.1109/TITS.2023.3268578pt
degois.publication.volume24pt
dc.date.embargo2023-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitISR - Institute of Systems and Robotics-
crisitem.author.researchunitISR - Institute of Systems and Robotics-
crisitem.author.parentresearchunitUniversity of Coimbra-
crisitem.author.parentresearchunitUniversity of Coimbra-
crisitem.author.orcid0000-0002-1854-049X-
crisitem.author.orcid0000-0002-2168-2077-
Appears in Collections:FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
I&D ISR - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Probabilistic Approach for Road-Users Detection.pdf6.87 MBAdobe PDFView/Open
Show simple item record

Page view(s)

100
checked on Oct 30, 2024

Download(s)

49
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons