Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/111956
Título: Probabilistic Approach for Road-Users Detection
Autor: Melotti, Gledson
Lu, Weihao
Conde, Pedro
Zhao, Dezong
Asvadi, Alireza 
Gonçalves, Nuno 
Premebida, Cristiano 
Palavras-chave: Object Detection; Overconfident prediction; Probabilistic calibration; Multimodality; Deep learning
Data: 2023
Editora: IEEE
Título da revista, periódico, livro ou evento: IEEE Transactions on Intelligent Transportation Systems
Volume: 24
Número: 9
Resumo: Object detection in autonomous driving applications implies the detection and tracking of semantic objects that are commonly native to urban driving environments, as pedestrians and vehicles. One of the major challenges in state-of-the-art deep-learning based object detection are false positives which occur with overconfident scores. This is highly undesirable in autonomous driving and other critical robotic-perception domains because of safety concerns. This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing. The suggested approach avoids the traditional Sigmoid or Softmax prediction layer which often produces overconfident predictions. It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives. The approach is validated on the 2D-KITTI objection detection through the YOLOV4 and SECOND (Lidar-based detector). The proposed approach enables interpretable probabilistic predictions without the requirement of re-training the network and therefore is very practical.
URI: https://hdl.handle.net/10316/111956
ISSN: 1524-9050
1558-0016
DOI: 10.1109/TITS.2023.3268578
Direitos: openAccess
Aparece nas coleções:FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
I&D ISR - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
Probabilistic Approach for Road-Users Detection.pdf6.87 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Visualizações de página

100
Visto em 30/out/2024

Downloads

49
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons