Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/112164
DC FieldValueLanguage
dc.contributor.authorLucatelli Nunes, Fernando-
dc.contributor.authorPrezado, Rui-
dc.contributor.authorSousa, Lurdes-
dc.date.accessioned2024-01-23T11:16:43Z-
dc.date.available2024-01-23T11:16:43Z-
dc.date.issued2022-10-21-
dc.identifier.issn1370-1444pt
dc.identifier.urihttps://hdl.handle.net/10316/112164-
dc.description8 pages, revised version, 11-01-2023pt
dc.description.abstractFor any suitable base category $\mathcal{V} $, we find that $\mathcal{V} $-fully faithful lax epimorphisms in $\mathcal{V} $-$\mathsf{Cat} $ are precisely those $\mathcal{V}$-functors $F \colon \mathcal{A} \to \mathcal{B}$ whose induced $\mathcal{V} $-functors $\mathsf{Cauchy} F \colon \mathsf{Cauchy} \mathcal{A} \to \mathsf{Cauchy} \mathcal{B} $ between the Cauchy completions are equivalences. For the case $\mathcal{V} = \mathsf{Set} $, this is equivalent to requiring that the induced functor $\mathsf{CAT} \left( F,\mathsf{Cat}\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work.pt
dc.language.isoengpt
dc.publisherBelgian Mathematical Societypt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectCauchy completionspt
dc.subjecteffective descent morphismpt
dc.subjectEnriched categoriespt
dc.subjectfully faithful morphismspt
dc.subjectlax epimorphismspt
dc.subjectsplit fibrationspt
dc.titleCauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrationspt
dc.typearticle-
degois.publication.firstPage131pt
degois.publication.lastPage139pt
degois.publication.issue1pt
degois.publication.titleBulletin of the Belgian Mathematical Society - Simon Stevinpt
dc.peerreviewedyespt
dc.identifier.doi10.36045/j.bbms.221021pt
degois.publication.volume30pt
dc.date.embargo2022-10-21*
rcaap.embargofctThe research was supported through the programme“Oberwolfach Leibniz Fellows”by the Mathematisches Forschungs institut Oberwolfachin2022, and partially supported by the Centre for Mathematics of the University of Coimbra-UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.The second author was supported by the grant PD/BD/150461/2019 funded by Fundação para a Ciência eTecnologia (FCT)pt
uc.date.periodoEmbargo0pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0003-3207-0639-
crisitem.author.orcid0000-0003-0100-1673-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

Page view(s)

50
checked on Nov 5, 2024

Download(s)

26
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons