Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/112164
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lucatelli Nunes, Fernando | - |
dc.contributor.author | Prezado, Rui | - |
dc.contributor.author | Sousa, Lurdes | - |
dc.date.accessioned | 2024-01-23T11:16:43Z | - |
dc.date.available | 2024-01-23T11:16:43Z | - |
dc.date.issued | 2022-10-21 | - |
dc.identifier.issn | 1370-1444 | pt |
dc.identifier.uri | https://hdl.handle.net/10316/112164 | - |
dc.description | 8 pages, revised version, 11-01-2023 | pt |
dc.description.abstract | For any suitable base category $\mathcal{V} $, we find that $\mathcal{V} $-fully faithful lax epimorphisms in $\mathcal{V} $-$\mathsf{Cat} $ are precisely those $\mathcal{V}$-functors $F \colon \mathcal{A} \to \mathcal{B}$ whose induced $\mathcal{V} $-functors $\mathsf{Cauchy} F \colon \mathsf{Cauchy} \mathcal{A} \to \mathsf{Cauchy} \mathcal{B} $ between the Cauchy completions are equivalences. For the case $\mathcal{V} = \mathsf{Set} $, this is equivalent to requiring that the induced functor $\mathsf{CAT} \left( F,\mathsf{Cat}\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work. | pt |
dc.language.iso | eng | pt |
dc.publisher | Belgian Mathematical Society | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | Cauchy completions | pt |
dc.subject | effective descent morphism | pt |
dc.subject | Enriched categories | pt |
dc.subject | fully faithful morphisms | pt |
dc.subject | lax epimorphisms | pt |
dc.subject | split fibrations | pt |
dc.title | Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations | pt |
dc.type | article | - |
degois.publication.firstPage | 131 | pt |
degois.publication.lastPage | 139 | pt |
degois.publication.issue | 1 | pt |
degois.publication.title | Bulletin of the Belgian Mathematical Society - Simon Stevin | pt |
dc.peerreviewed | yes | pt |
dc.identifier.doi | 10.36045/j.bbms.221021 | pt |
degois.publication.volume | 30 | pt |
dc.date.embargo | 2022-10-21 | * |
rcaap.embargofct | The research was supported through the programme“Oberwolfach Leibniz Fellows”by the Mathematisches Forschungs institut Oberwolfachin2022, and partially supported by the Centre for Mathematics of the University of Coimbra-UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.The second author was supported by the grant PD/BD/150461/2019 funded by Fundação para a Ciência eTecnologia (FCT) | pt |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
crisitem.author.researchunit | CMUC - Centre for Mathematics of the University of Coimbra | - |
crisitem.author.orcid | 0000-0003-3207-0639 | - |
crisitem.author.orcid | 0000-0003-0100-1673 | - |
Appears in Collections: | I&D CMUC - Artigos em Revistas Internacionais FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations.pdf | 175.62 kB | Adobe PDF | View/Open |
Page view(s)
50
checked on Nov 5, 2024
Download(s)
26
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License