Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/112164
Título: Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations
Autor: Lucatelli Nunes, Fernando 
Prezado, Rui 
Sousa, Lurdes 
Palavras-chave: Cauchy completions; effective descent morphism; Enriched categories; fully faithful morphisms; lax epimorphisms; split fibrations
Data: 21-Out-2022
Editora: Belgian Mathematical Society
Título da revista, periódico, livro ou evento: Bulletin of the Belgian Mathematical Society - Simon Stevin
Volume: 30
Número: 1
Resumo: For any suitable base category $\mathcal{V} $, we find that $\mathcal{V} $-fully faithful lax epimorphisms in $\mathcal{V} $-$\mathsf{Cat} $ are precisely those $\mathcal{V}$-functors $F \colon \mathcal{A} \to \mathcal{B}$ whose induced $\mathcal{V} $-functors $\mathsf{Cauchy} F \colon \mathsf{Cauchy} \mathcal{A} \to \mathsf{Cauchy} \mathcal{B} $ between the Cauchy completions are equivalences. For the case $\mathcal{V} = \mathsf{Set} $, this is equivalent to requiring that the induced functor $\mathsf{CAT} \left( F,\mathsf{Cat}\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work.
Descrição: 8 pages, revised version, 11-01-2023
URI: https://hdl.handle.net/10316/112164
ISSN: 1370-1444
DOI: 10.36045/j.bbms.221021
Direitos: openAccess
Aparece nas coleções:I&D CMUC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Visualizações de página

50
Visto em 5/nov/2024

Downloads

26
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons