Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/44180
Título: Sums of squares on the hypercube
Autor: Blekherman, Grigoriy 
Gouveia, João 
Pfeiffer, James 
Data: 2016
Editora: Springer
Projeto: info:eu-repo/grantAgreement/FCT/5876/147205/PT 
Título da revista, periódico, livro ou evento: Mathematische Zeitschrift
Volume: 284
Número: 1-2
Resumo: Let X be a finite set of points in R^n. A polynomial p nonnegative on X can be written as a sum of squares of rational functions modulo the vanishing ideal I(X). From the point of view of applications, such as polynomial optimization, we are interested in rational function representations of small degree. We derive a general upper bound in terms of the Hilbert function of X, and we show that this upper bound is tight for the case of quadratic functions on the hypercube C={0,1}^n, a very well studied case in combinatorial optimization. Using the lower bounds for C we construct a family of globally nonnegative quartic polynomials, which are not sums of squares of rational functions of small degree. To our knowledge this is the first construction for Hilbert’s 17th problem of a family of polynomials of bounded degree which need increasing degrees in rational function representations as the number of variables n goes to infinity. We note that representation theory of the symmetric group S_n plays a crucial role in our proofs of the lower bounds.
URI: https://hdl.handle.net/10316/44180
DOI: 10.1007/s00209-016-1644-7
10.1007/s00209-016-1644-7
Direitos: embargoedAccess
Aparece nas coleções:I&D CMUC - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
SquaresHypercubeRevised.pdf308.25 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

11
Visto em 9/nov/2022

Citações WEB OF SCIENCETM
10

10
Visto em 2/nov/2024

Visualizações de página

253
Visto em 30/out/2024

Downloads

289
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.