Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/44180
Título: | Sums of squares on the hypercube | Autor: | Blekherman, Grigoriy Gouveia, João Pfeiffer, James |
Data: | 2016 | Editora: | Springer | Projeto: | info:eu-repo/grantAgreement/FCT/5876/147205/PT | Título da revista, periódico, livro ou evento: | Mathematische Zeitschrift | Volume: | 284 | Número: | 1-2 | Resumo: | Let X be a finite set of points in R^n. A polynomial p nonnegative on X can be written as a sum of squares of rational functions modulo the vanishing ideal I(X). From the point of view of applications, such as polynomial optimization, we are interested in rational function representations of small degree. We derive a general upper bound in terms of the Hilbert function of X, and we show that this upper bound is tight for the case of quadratic functions on the hypercube C={0,1}^n, a very well studied case in combinatorial optimization. Using the lower bounds for C we construct a family of globally nonnegative quartic polynomials, which are not sums of squares of rational functions of small degree. To our knowledge this is the first construction for Hilbert’s 17th problem of a family of polynomials of bounded degree which need increasing degrees in rational function representations as the number of variables n goes to infinity. We note that representation theory of the symmetric group S_n plays a crucial role in our proofs of the lower bounds. | URI: | https://hdl.handle.net/10316/44180 | DOI: | 10.1007/s00209-016-1644-7 10.1007/s00209-016-1644-7 |
Direitos: | embargoedAccess |
Aparece nas coleções: | I&D CMUC - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
SquaresHypercubeRevised.pdf | 308.25 kB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
11
Visto em 9/nov/2022
Citações WEB OF SCIENCETM
10
10
Visto em 2/nov/2024
Visualizações de página
253
Visto em 30/out/2024
Downloads
289
Visto em 30/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.