Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/7709
Título: | An interlacing theorem for matrices whose graph is a given tree | Autor: | Fonseca, C. M. da | Data: | 2006 | Citação: | Journal of Mathematical Sciences. 139:4 (2006) 6823-6830 | Resumo: | Abstract Let A and B be (nn)-matrices. For an index set S ? {1, …, n}, denote by A(S) the principal submatrix that lies in the rows and columns indexed by S. Denote by S' the complement of S and define ?(A, B) = $$\mathop \sum \limits_S $$ det A(S) det B(S'), where the summation is over all subsets of {1, …, n} and, by convention, det A(Ø) = det B(Ø) = 1. C. R. Johnson conjectured that if A and B are Hermitian and A is positive semidefinite, then the polynomial ?(?A,-B) has only real roots. G. Rublein and R. B. Bapat proved that this is true for n ? 3. Bapat also proved this result for any n with the condition that both A and B are tridiagonal. In this paper, we generalize some little-known results concerning the characteristic polynomials and adjacency matrices of trees to matrices whose graph is a given tree and prove the conjecture for any n under the additional assumption that both A and B are matrices whose graph is a tree. | URI: | https://hdl.handle.net/10316/7709 | DOI: | 10.1007/s10958-006-0394-1 | Direitos: | openAccess |
Aparece nas coleções: | FCTUC Matemática - Artigos em Revistas Internacionais |
Mostrar registo em formato completo
Visualizações de página
294
Visto em 29/out/2024
Downloads
184
Visto em 29/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.