Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89455
Title: Intrinsic Schreier Split Extensions
Authors: Montoli, Andrea 
Rodelo, Diana 
Van der Linden, Tim 
Keywords: Fibration of points; Jointly extremal-epimorphic pair; Regular category; Unital category; Protomodular category; Monoid; Jónsson–Tarski variety
Issue Date: 2020
Publisher: Springer Verlag
Project: CMUC-UID/MAT/00324/2019 
metadata.degois.publication.title: Applied Categorical Structures
metadata.degois.publication.volume: 28
Abstract: In the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of S-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.
URI: https://hdl.handle.net/10316/89455
DOI: 10.1007/s10485-019-09588-4
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
arXiv version1.pdf302.08 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

2
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations 20

2
checked on Oct 2, 2024

Page view(s)

138
checked on Nov 5, 2024

Download(s)

93
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.