Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/93189
Título: Learning Motion Patterns from Multiple Observations along the Actions Phases of Manipulative Tasks
Autor: Faria, Diego 
Martins, Ricardo Filipe Alves 
Dias, Jorge 
Data: 18-Out-2010
Título da revista, periódico, livro ou evento: IROS 2010 - 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems- Session Workshop on Grasp Planning and Task Learning by Imitation
Resumo: In this work we present a probabilistic approach to find motion patterns in manipulative tasks by looking for similarities among the relevant features along of the actions phases of a trajectories dataset. From multiples observations of human movements we can align all signals temporally to perform a learning process based on selection of relevant features by analyzing their probability distribution and finding correspondent features with high probability in each phase of the trajectories of a dataset. Using the spatio-temporal information of the learned features we can generate a generalized trajectory of the dataset using a polynomial regression to fit the features data by successive approximations. The smoothed trajectory can be used as a prototype/template for matching (1:1) or for classification (1:N) using Bayesian techniques to know if a new observation is similar to a specific task or to recognize a task. The intention here is to have an approach that is able to learn and generalize a specific movement by their patterns to be applied in the future for different contexts. We are not going through the imitation learning part, but we are focusing on the ability of learning to reach some intelligence to approximate a movement generalization, tasks that humans do in a natural and easy way.
URI: https://hdl.handle.net/10316/93189
DOI: 10.5281/zenodo.4553421
Direitos: openAccess
Aparece nas coleções:FCTUC Eng.Electrotécnica - Artigos em Livros de Actas

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
full-text.pdffull-text876.12 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Visualizações de página

308
Visto em 29/out/2024

Downloads

67
Visto em 29/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.