Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/95557
Título: | Teoria assintótica de máximos sob estacionaridade forte | Outros títulos: | Asymptotic theory of maxima under strong stationarity | Autor: | Fernandes, Augusto Manuel de Oliveira | Orientador: | Martins, Cristina Maria Tavares Mendes, Maria da Graça Santos Temido Neves |
Palavras-chave: | Teoria de Extremos; Estacionaridade Forte; Distribuições MEV; Distribuições Max-Estáveis; Teorema Limite Extremal; Extreme Value Theory; Strong Stationarity; MEV Distributions; Max-Stable Distributions; Extreme Limit Theorem | Data: | 2-Jul-2021 | Título da revista, periódico, livro ou evento: | Teoria assintótica de máximos sob estacionaridade forte | Local de edição ou do evento: | Departamento de Matemática da Universidade de Coimbra | Resumo: | A Teoria de Extremos estuda a distribuição dos valores extremos de amostras aleatórias, com o objetivo de encontrar modelos que permitam tomar decisões relativamente ao comportamento futuro de fenómenos raros, mas de grande impacto. Perdas causadas por desastres naturais e riscos de investimentos financeiros são bons exemplos de motivações deste estudo. Na génese da Teoria de Extremos está o Teorema de Gnedenko, o qual estabelece que, em condições bastante gerais, a classe dos possíveis limites em distribuição do máximo de n variáveis aleatórias, reais independentes e identicamente distribuídas, coincide com a classe das distribuições max-estáveis. A demonstração deste resultado e de condições que garantem a existência de tal limite ocupam essencialmente a primeira parte deste trabalho.Dirigimos o estudo para a teoria probabilística de extremos em contextos de dependência, no que diz respeito à caracterização do limite em distribuição do máximo em sucessões univariadas e multivariadas fortemente estacionárias, sujeitas a condições de independência assintótica e de dependência local adequadas.No caso univariado mostramos que sob a validade da condição de independência assintótica, se mantêm as conclusões do Teorema Limite Extremal, surgindo, contudo, um parâmetro usualmente designado índice extremal da sucessão. Este parâmetro permite a caracterização completa da distribuição limite do máximo a partir da sua contrapartida clássica.O trabalho prossegue no domínio multivariado. Para proceder à caracterização da classe de limites em distribuição do máximo multivariado, são necessários o conceito de índice extremal multivariado e de cópula de uma função de distribuição multivariada, ao que se junta o comportamento assintótico marginal, especificado pelo Teorema Limite Extremal clássico. Mais concretamente, demonstramos um Teorema Limite Extremal multivariado e concluímos que uma distribuição limite multivariada de máximos se caracteriza por ter margens max-estáveis e cópula max-estável.Estudamos um modelo autorregressivo de máximos de ordem 1 multivariado e um modelo de máximos móveis multivariado, começando por estabelecer a sua estacionaridade forte. Inserindo estes modelos na plataforma teórica descrita acima, obtemos a distribuição limite do máximo, avaliando diferentes concretizações do índice extremal, das distribuições das margens e de cópulas. The Extreme Value Theory studies the distribution of extreme values of random samples. The aim of this theory is to find models to make decisions regarding the future behaviour of rare but high-impact phenomena, such as losses caused by natural disasters and financial investment.At the genesis of the Extreme Value Theory is the Gnedenko Theorem. Under general conditions, this theorem establishes the class of possible limits in the distribution of the maximum of n random variables, real independent and identically distributed, coinciding with the class of the max-stable distributions. The first part of this work concerns the proof of this result and the conditions that guarantee the existence of such limit.We direct the study towards the Probabilistic Extreme Value Theory in dependency contexts. In fact, this study regards the characterization of the limit in distribution of the maximum in strongly stationary univariate and multivariate sequences. These sequences are subject to asymptotic independence and local dependence conditions.In the univariate case we show that under the validity of the asymptotic independence condition, the conclusions of the Extreme Limit Theorem are maintained. However, a parameter, usually called the extreme index of the sequence, emerges. This parameter allows for the complete characterization of the limit distribution of the maximum from its classical counterpart.The work proceeds in the multivariate domain. To characterize the class of limits in multivariate maximum distribution, the concept of a multivariate extreme index and a copula of a multivariate distribution function are necessary. A marginal asymptotic behaviour, specified by the classic extreme limit theorem, is added. More specifically, we prove a multivariate Extreme Limit Theorem and conclude that a multivariate limit distribution of maxima is characterized by having max-stable margins and max-stable copula.This study concerns a multivariate maximum autoregressive of order 1 process and a multivariate moving maxima process, starting by establishing their strong stationarity. Inserting these models in the theoretical platform described above, we obtain the limit distribution of the maximum, evaluating different embodiments of the extreme index, margin distributions and copula.\\ |
Descrição: | Dissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia | URI: | https://hdl.handle.net/10316/95557 | Direitos: | openAccess |
Aparece nas coleções: | UC - Dissertações de Mestrado |
Mostrar registo em formato completo
Visualizações de página
139
Visto em 6/nov/2024
Downloads
118
Visto em 6/nov/2024
Google ScholarTM
Verificar
Este registo está protegido por Licença Creative Commons